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ABSTRACT

Image steganography is the process of embedding secret information within digital images such that the very
presence of the message remains undetectable. Recent advances in deep learning, particularly in generative adversarial
networks (GANs), have significantly improved both the payload capacity and perceptual quality of steganographic
systems. The original SteganoGAN, implemented in Torch, achieved state-of-the-art performance by embedding up
to 4.4 bits per pixel while maintaining strong resistance to steganalysis methods. However, the influence of the critic
network on steganographic quality and learning stability remains insufficiently explored.

This paper presents Keras-SteganoGAN, a TensorFlow-based reimplementation and extension of SteganoGAN,
designed to systematically analyze the role of the critic in adversarial steganographic training. Two variants of the
model—one incorporating a critic and one without—were trained and compared across three encoder architectures:
basic convolutional, residual, and dense. Each configuration was trained over five epochs with message depths
ranging from I to 6 bits, allowing a comprehensive study of trade-offs between payload capacity, image distortion,
and decoding accuracy.

Quantitative evaluation was conducted using standard image quality and steganographic metrics, including
PSNR, SSIM, RS-BPP, and decoder accuracy. The results indicate that the inclusion of a critic improves perceptual
quality and visual similarity at lower payloads, but its contribution diminishes as the message depth increases. These
findings provide new insights into the interaction between encoder complexity, critic dynamics, and steganographic

performance, offering guidance for the design of future GAN-based steganography systems.

Key words: SteganoGAN, Keras, TensorFlow, image steganography, GAN, encoder, critic network, payload
capacity, residual, dense, decoder, adversarial learning, hidden message, similarity metrics.

Introduction

The art and science of image steganography revolve
around embedding secret information within an image
so that the presence of the hidden data remains imper-
ceptible to observers. Unlike cryptography, where the
primary goal is to secure the contents of the message
by making it unreadable to adversaries, steganography
goes a step further by ensuring that even the existence
of the message is concealed. In typical usage scenarios,
a sender encodes a secret message into a cover image,
and transmits the image to a receiver who can extract
the hidden data. This makes steganography particularly
useful in situations where the transmission of encrypted
messages might attract attention or raise suspicion.

The fundamental challenge of image steganogra-
phy is to maximize the amount of data that can be hid-
den in an image without introducing visible artifacts or

detectable anomalies. Steganography should ideally pre-
serve the appearance of the cover image so that even
sophisticated analysis tools or trained observers can-
not detect alterations. However, this balance between
embedding capacity and image quality has proven dif-
ficult to achieve. Traditional image steganography tech-
niques, such as least significant bit (LSB) manipulation,
can effectively hide small amounts of data but often
introduce visible distortions when larger payloads are
embedded. Moreover, automated steganalysis tools
have become increasingly capable of detecting these
modifications, limiting the effectiveness of these con-
ventional approaches.

For a long time, traditional steganographic methods
were only able to achieve modest payload capacities,
typically up to around 0.4 bits per pixel (bpp) [1]. As
payloads increase beyond this threshold, the chances of
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introducing detectable artifacts increase, and the cover
image becomes more susceptible to analysis by auto-
mated steganalysis techniques. These tools can identify
subtle inconsistencies in the image, such as irregularities
in pixel distributions, that signal the presence of hidden
data. In extreme cases, these distortions are noticeable
to the human eye, rendering the steganographic tech-
nique ineffective for its purpose of secrecy.

In recent years, the rise of deep learning, particularly
with the advent of neural networks, has significantly
advanced the field of image steganography. Unlike tra-
ditional methods, which rely on predefined rules or
statistical models to hide information, deep learning
approaches have shown a remarkable ability to optimize
both the payload capacity and image quality. These neu-
ral network-based methods are able to learn intricate
patterns within images, making it possible to embed
more data while minimizing detectable distortions. This
has given rise to a new class of steganographic tech-
niques that leverage generative models, such as gener-
ative adversarial networks (GANs), to create more effi-
cient and effective steganographic systems.

Among these advancements is SteganoGAN, a Arti-
ficial Intelligence (Al) model developed by [2], which
demonstrated the power of GANs in the realm of image
steganography. SteganoGAN represents one of the
first implementations of a fully end-to-end deep learn-
ing-based system for hiding arbitrary binary data in
images, rather than simply embedding one image inside
another. By employing a GAN architecture [3], Stegano-
GAN optimizes the perceptual quality of the generated
steganographic images while simultaneously enhancing
the embedding capacity. With the use of a critic network,
the model is trained to produce steganographic images
that are virtually indistinguishable from the original
cover images, allowing it to evade detection by standard
steganalysis tools. The original SteganoGAN achieved a
payload capacity of up to 4.4 bits per pixel, a significant
improvement over traditional methods.

However, despite these advancements, some
aspects of SteganoGAN’s design were left unexplored
in the original work. One such area is the exact process
by which the message tensor is created. In SteganoGAN,
messages are encoded using the Reed-Solomon error
correction code, which is designed to improve the reli-
ability of message recovery by correcting errors in the
decoded message. After encoding, the message is con-
verted to bits and packed into a tensor, with message
bits placed sequentially, divided by 32 zero bits. This
encoding method improves the error-correction capa-
bilities of the model, but it also adds complexity to the
overall system.

In our work, we propose KerasSteganoGAN, a reim-
plementation of SteganoGAN in TensorFlow, with a key
modification: the removal of Reed-Solomon encoding

and decoding. By eliminating this step, we streamline the
message embedding process while maintaining the core
strengths of the GAN-based architecture. The motivation
behind this change is to reduce computational overhead
and complexity while still achieving effective message
recovery. We also investigate the role of the critic net-
work by introducing two versions of KerasSteganoGAN —
one with a critic network and one without — allowing us
to explore how the inclusion of the critic affects image
quality and steganographic performance.

Research Objectives And Tasks

The primary objective of this research is to develop
and evaluate Keras-SteganoGAN, a TensorFlow-based
reimplementation of the original SteganoGAN model,
designed to simplify the message embedding process
while maintaining high image quality and embedding
capacity. By removing the Reed-Solomon error correc-
tion mechanism, the study aims to reduce computational
complexity and training overhead without compromising
the accuracy of message extraction. This streamlined
architecture seeks to demonstrate that robust message
recovery and imperceptible image quality can still be
achieved through careful network design and optimiza-
tion within the GAN framework.

A secondary objective of this work is to analyze the
influence of the critic network on the overall perfor-
mance of the model. To this end, two distinct versions
of KerasSteganoGAN are implemented: one including a
critic component and another operating without it. The
comparative analysis between these variants focuses
on evaluating their impact on key performance metrics
such as payload capacity, decoding accuracy, Peak Sig-
nal-to-Noise Ratio (PSNR), and Structural Similarity Index
Measure (SSIM). This comparison allows for a deeper
understanding of how adversarial learning contributes
to the balance between embedding fidelity and visual
indistinguishability.

Finally, the research aims to empirically validate the
effectiveness of KerasSteganoGAN through extensive
experiments on benchmark image datasets. The study’s
tasks include designing and training the models, meas-
uring and comparing their quantitative and qualitative
performance, and analyzing trade-offs between compu-
tational efficiency and steganographic robustness. The
results are expected to provide insights into optimizing
GAN-based steganographic architectures for practical
use, setting the groundwork for further exploration of
adaptive and lightweight deep learning techniques in the
field of image steganography.

Research Materials And Methods

SteganoGAN is a groundbreaking that leverages
the power of GANs to tackle the challenges of image
steganography. Traditional approaches to image
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steganography often suffer from limited payload capac-
ity and the risk of introducing visible artifacts that can
be detected by automated steganalysis tools. By using a
GAN-based architecture, SteganoGAN overcomes these
limitations, significantly enhancing the embedding rate
while maintaining high image quality [4].

At its core, SteganoGAN is an end-to-end deep learn-
ing model that allows for the hiding of arbitrary binary
data inside images, written with Python library called
PyTorch. The model’s architecture consists of three
main components: an encoder, a decoder, and a critic
network.

The encoder is responsible for embedding the secret
message into the cover image, transforming it into a
steganographic image. The decoder, on the other hand,
works to recover the hidden message from the steg-
anographic image. The critic network plays the role of
a discriminator in the GAN framework, evaluating how
close the generated steganographic image is to the
original cover image [5]. This adversarial relationship
between the generator (encoder) and the critic enables
the model to produce steganographic images that are
nearly indistinguishable from the original ones, making
it difficult for steganalysis tools to detect the presence
of hidden data.

One of the key innovations in SteganoGAN is the
use of multiple loss functions to optimize the encoder,
decoder, and critic simultaneously. By balancing these
losses — specifically, the decoding accuracy, the percep-
tual similarity between the cover and steganographic
images, and the realism of the generated image — the
model is able to achieve a high payload capacity while
maintaining image fidelity.

The architecture of SteganoGAN is carefully designed
to balance embedding capacity and image quality.
It includes three key components: the encoder, the
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decoder, and the critic network, which together work
within an adversarial training framework and shown
on Figure 1. This allows SteganoGAN to hide arbitrary
binary data in images while maintaining their visual
integrity, like in [6].

Encoder Network

SteganoGAN incorporates three different encoder
architectures, each designed to explore different meth-
ods of embedding messages into images: the basic
encoder, the residual encoder, and the dense encoder.
Each of these architectures (Figure 2) handles the fea-
ture extraction and message embedding processes
differently, which impacts both the quality of the gen-
erated steganographic image and the model’s ability to
recover the hidden message.

Basic Encoder — the the simplest variant, designed
with a straightforward convolutional architecture. It
starts by processing the cover image through several
convolutional layers, which transform the image into a
feature map. The binary message is then concatenated
to these features and passed through additional convolu-
tional layers. The final output is a steganographic image
that contains the embedded message. This architecture
is relatively simple and fast to train, but its limitation is
that it may not efficiently capture intricate image details
or provide the best possible image quality when embed-
ding large amounts of data. The lack of skip connections
or advanced feature reuse mechanisms means that the
model might struggle with higher message depths or
complex images.

Residual Encoder — builds upon the basic encoder by
introducing residual connections, a technique originally
popularized by ResNet architectures [7]. In this design,
after the message is concatenated to the image features
and processed through the convolutional layers, the out-
put of the encoder is added to the original cover image.
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Fig. 1. Original SteganoGAN model architecture
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Fig. 2. Encoder different types (Basic, Residual and Dense)

This means that the encoder is learning to produce a
residual image — an image that represents the differ-
ence between the cover image and the steganographic
image — rather than the steganographic image itself. The
advantage of using residual connections is that they help
prevent vanishing gradient problems during training
and enable the model to focus on the minimal changes
needed to embed the message. By only adjusting parts
of the image where necessary, the residual encoder
tends to produce higher-quality steganographic images,
especially when dealing with larger payloads. This archi-
tecture also typically converges faster than the basic
encoder.

Dense Encoder — the most advanced of the three
and is inspired by the DenseNet architecture [8]. In this
design, the output of each convolutional layer is densely
connected to the inputs of all subsequent layers. In
other words, the feature maps produced by each layer
are concatenated with the feature maps of all previous
layers, ensuring that the encoder reuses features across
the network. This results in feature reuse, meaning that
the model can more effectively capture complex image
details and use the most relevant information for embed-
ding the message. Dense connections mitigate the van-
ishing gradient problem more effectively than residual
connections and encourage the model to leverage both
low-level and high-level features simultaneously. This
makes the dense encoder particularly well-suited for sce-
narios where the payload is large or the image content is
complex. However, the trade-off is that this architecture
is more computationally expensive and requires more
memory than the basic or residual encoders.

Decoder Network

In SteganoGAN, two decoder architectures are
employed: the basic decoder and the dense decoder.
The decoder’s primary role is to extract the hidden
message from the steganographic image, and the effec-
tiveness of this process is crucial for ensuring accurate
message recovery. The architecture of the decoder can
significantly influence how well it performs under differ-
ent conditions, particularly when handling varying pay-
load sizes and complex image content.

Basic Decoder — follows a straightforward approach,
much like the basic encoder. It consists of several convo-
lutional layers that transform the steganographic image
back into a feature representation. These features are
then processed to recover the original binary message.
Just like Basic Endoder, the design of the basic decoder
is simple, with no advanced connectivity mechanisms
between layers. While the basic decoder is efficient
and works well for smaller payloads, its simplicity can
become a limiting factor when dealing with larger mes-
sage depths or more complex steganographic images
[9-10]. It processes each layer sequentially, without tak-
ing advantage of previous layer outputs, which can lead
to less accurate message recovery in more challenging
scenarios. Should be mentioned that Basic Decoder only
uses with Basic or Residual Encoder.

Dense Decoder — builds upon the same principle
as the dense encoder, utilizing dense connections to
enhance feature extraction and reuse. In this archi-
tecture, each layer’s output is concatenated with the
outputs of all preceding layers. This ensures that every
convolutional layer has access to the full set of features
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extracted by earlier layers, allowing the decoder to
leverage both low-level and high-level information
simultaneously.

The dense decoder is particularly well-suited for
recovering messages from images where the message
depth is high or the cover image is complex. By main-
taining access to all previous feature maps, the dense
decoder can more effectively reconstruct the binary
message. This architecture excels in scenarios where
high accuracy is essential, as it mitigates the risk of losing
critical information during the decoding process.

Critic Network

The critic network is crucial to the adversarial train-
ing process. It distinguishes between real images (the
original cover images) and fake images (the stegano-
graphic images generated by the encoder). The critic's
feedback guides the encoder, pushing it to generate
steganographic images that look more realistic and are
harder to distinguish from the original cover images.
The critic uses the Wasserstein loss, which is designed
to improve the training stability of GANs and ensures
that the generated images closely resemble real cover
images [11-13].

Loss Functions

SteganoGAN employs three primary loss functions to
optimize the encoder, decoder, and critic simultaneously:

- Decoder loss — measures how well the decoder
D recovers the hidden message in steganographic mes-
sage £(X,M), where X is original image, and M is
original message. It uses binary cross-entropy loss to
compare the original message to the decoded message
D(S(X, M)) . The goal is to minimize the error between
the original and the recovered with decoder binary
messages.

L, = Ey_, CrossEntorpy (D (E(X,M)), M) (1

- Image similarity loss — this loss ensures that the
steganographic image remains visually similar to the
original cover image. The image similarity loss is calcu-
lated using the mean square error (MSE), which meas-
ures the difference between each pixel in the cover
image and the corresponding pixel in the steganographic
image. Minimizing this error helps preserve the appear-
ance of the cover image.

1
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- Realness loss —returns critic C score of stegano-

graphic image.

L, =E X -&(X,M), (2)

L, =By, C(E(X,M)) (3)

The total loss is the sum of these three losses: the
decoder loss, the image similarity loss, and the realness
loss.

minimizel, + L, + L, 4)

By minimizing this combined loss, SteganoGAN opti-
mizes the quality of the steganographic images while
ensuring reliable message recovery. SteganoGAN uses
this combined loss to train both encoder and decoder
model weights.

Critic loss — evaluates how realistic the stegano-
graphic images are compared to the original cover
images.

L =Ey,C(X)-Ey,C((X,M)) (5)

The critic loss is based on the Wasserstein distance,
which compares the distributions of the real images
(cover images) and the generated images (stegano-
graphic images). The encoder aims to generate images
that minimize the critic's ability to distinguish between
the real and fake images.

Keras Steganogan Architecture

KerasSteganoGAN is a TensorFlow-based reimple-
menta-tion of the original SteganoGAN architecture with
several notable modifications to simplify the message
encoding and decoding processes while maintaining the
overall structure and functionality of the original model.
Instead of modifying original PyTotch-based StegnoGAN,
KerasSteganoGAN was rewritten with more functional
and popular Python library called TensorFlow. First rea-
son to make TensorFlow-based SteganoGAN is possibil-
ity of using it only with definite version of PyTorch library
and Python. Another reason is possibility of using LiteRT
library of making lightweighted mobile versions of Al
models.

Key modification in KerasSteganoGAN is the removal
of the Reed-Solomon error correction method, which
was previously used in SteganoGAN to enhance message
recovery accuracy. In SteganoGAN, the binary message
was first encoded with Reed-Solomon, converted into
bits, and then placed into a tensor, separated by blocks
of zero bits. This process added computational complex-
ity while improving error tolerance during decoding.

In KerasSteganoGAN, we opted to remove the
Reed-Solomon encoding and decoding steps, simplifying
the model’s structure. By doing so, we rely solely on the
Al models (encoder and decoder) to manage the embed-
ding and extraction of messages. This change reduces
overhead and streamlines the overall pipeline without
significantly impacting performance. The hidden mes-
sage is now directly embedded into the cover image, and
its recovery is entirely dependent on the performance of
the neural network models.

Despite these modifications, the core components
of the architecture remain intact, including the encod-
er-decoder structure and the option to utilize differ-
ent types of encoders (basic, residual, and dense). The
removal of Reed-Solomon encoding enables the model
to focus purely on leveraging the strengths of the neural
network for accurate message recovery, which simplifies
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the training and deployment processes while maintain-
ing high payload capacity and image quality.

Another significant change that contains KerasSte-
ganoGAN is that we use Sigmoid activation function at
the last convolution layers of each encoder and decoder
models in order to return data in a range of [-1, 1]. In the
case of the encoder, returned data will be converted to
an image, or in the case of the decoder, it will be con-
verted to a tensor of binary data. In the original Stega-
noGAN model, both encoder and decoder models have
no activation functions at the last convolution layers
[14-15].

KerasSteganoGAN architecture allows generation of
steganographic images with the size of 128x128 pixels,
though SteganoGAN allows generation of stego-images
with original size of cover-images. The reason of this is
the difficulty of the implementation of such an architec-
ture as well as the complexity of training.

One of the key explorations in KerasSteganoGAN is
the introduction of two distinct model variants: with a
critic and without a critic. In the original SteganoGAN,
the critic network played an important role in the adver-
sarial training process by helping the model learn to gen-
erate steganographic images that are indistinguishable
from real images. The critic evaluates how realistic the
generated steganographic images are and provides feed-
back to improve the encoder's output.

In KerasSteganoGAN, we decided to investigate the
specific impact of the critic network on the quality of
the steganographic images and the accuracy of mes-
sage recovery. To do so, we created two versions of the
model:
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- One version includes the critic network, mimick-
ing the adversarial setup from SteganoGAN.

- The other version operates without a critic net-
work, meaning the encoder and decoder are trained
without the additional adversarial feedback.

The motivation for this comparison is to analyze
whether the critic network contributes significantly
to improving the visual quality of the images and the
reliability of message recovery or if a non-adversarial
approach can yield comparable results. Both variants
still use the same encoder-decoder structures, with the
option to choose between basic, residual, and dense
encoder types, but the inclusion or exclusion of the critic
alters the training dynamics. Figure 3 presents KerasSte-
ganoGAN architecture without critic with basic or dense
decoder types while encoder types could be the same
as at the original SteganoGAN: basic, residual or dense.

Training both model variants allows us to com-
pare the influence of adversarial feedback in the GAN
framework versus simpler encoder-decoder setups. This
exploration is aimed at understanding whether the crit-
ic’s complexity justifies its potential benefits, especially
in terms of computational cost and training time.

Training And Comparision

To thoroughly evaluate the performance of KerasSte-
ganoGAN models with and without the critic network,
we used a set of key metrics that assess both the quality
of the steganographic images and the effectiveness of
message recovery. These metrics — RS-BPP (Reed-Solo-
mon bits per pixel), PSNR (Peak Signal-to-Noise Ratio),
and SSIM (Structural Similarity Index Measure) — are
standard in the field of steganography, providing insights
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Fig. 3. Critic-less KerasSteganoGAN architecture with basic or dense decoder types
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into the image quality, message capacity, and accuracy
of the decoder. Detailed description of these metrics is
provided in [16].

To train our model Div2K [17] dataset was used with
batch size of 4. The train dataset consists of 700 pictures
of different sizes, while the validation dataset consists
of only 100 pictures. Due to the absence of GPU with
CUDA cores, our neural network training was done on
CPU Intel i9, and took 15 minutes to train the model on
5 epochs.

PSNR measures the difference in quality between
the steganographic image and the original cover image.
A higher PSNR value indicates that the two images are
more similar, with fewer distortions or artifacts in the ste-
ganographic image. In the context of KerasSteganoGAN,
we use PSNR to evaluate how well the model preserves
the visual quality of the cover image after embedding
the hidden message. The influence of the critic network
is particularly highlighted by this metric, as models with
a critic are expected to generate steganographic images
that closely resemble the cover images.

SSIM is another metric used to evaluate the quality
of the steganographic image, focusing on the perceptual
similarity between the cover and stego-images. It meas-
ures structural changes, taking into account luminance,
contrast, and texture. Like PSNR, higher SSIM values
indicate better preservation of the image structure. To
visualize the impact of the critic network on image qual-
ity, plots of SSIM for different encoder types and data
depths will demonstrate how the critic influences the
visual similarity between the stego and cover images.

The RS-BPP metric calculates the effective number of
bits per pixel that can be reliably hidden and recovered in
the image. This metric is derived from the decoder accu-
racy and the message depth. Although we removed the
Reed-Solomon encoding/decoding process in KerasSte-
ganoGAN, we still use the RS-BPP formula to estimate
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the capacity of the model. It provides a clear measure of
how efficiently the model can embed and recover data,
particularly when comparing different encoder types
and their ability to handle various message depths.

These three metrics allow us to assess the perfor-
mance of KerasSteganoGAN from different perspectives:
PSNR and SSIM evaluate the visual fidelity of the images,
while RS-BPP measures the model’s capacity to embed
and recover data effectively. The upcoming sections will
illustrate these metrics through various plots, particu-
larly focusing on how the inclusion of the critic network
affects image quality and message recovery.

To comprehensively compare the performance of
KerasSteganoGAN models with and without a critic net-
work, we trained both variants using three encoder-de-
coder configurations:

- basic encoder — basic decoder;

- residual encoder — basic decoder;

- dense encoder — dense decoder.

For each of these encoder-decoder pairs, we exper-
imented with six different message depths (1 to 6 bits
per pixel), varying the amount of data embedded in each
image. Each configuration was trained for 5 epochs, as
this was sufficient to observe the general trends in the
models’ performance while keeping the training time
manageable. The impact of these choices on the per-
formance of the models is reflected in several metrics —
PSNR, SSIM, and RS-BPP — as shown in the figures that
follow.

In Figure 4, we present PSNR results for all three
encoder configurations (basic, residual, and dense)
across different message depths. Here, it becomes evi-
dent that models with a critic network generally achieve
higher PSNR values, particularly at higher data depths,
indicating better preservation of image quality. The
residual encoder, paired with a basic decoder, shows a
significant improvement in PSNR compared to the basic
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Fig. 4. Plot of SSIM metrics during 5 epochs of training KerasSteganoGAN with and without critic model
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encoder, especially when trained with a critic. The dense
encoder achieves the best overall results, with PSNR val-
ues staying high even with 6 bits per pixel of data, high-
lighting its superior ability to handle larger payloads.

Similarly, Figure 5 showcases the SSIM metric for
the same encoder-decoder configurations. The dense
encoder consistently achieves higher SSIM values, indi-
cating a better structural similarity between the stego
and cover images. Models with a critic tend to perform
better in terms of SSIM across all data depths, reinforc-
ing the idea that the critic helps the encoder preserve
image structure more effectively.

55IM Metric Logs
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The RS-BPP metric (shown in Figure 6) provides
insight into the effective payload capacity of the
models.

Here, the dense encoder again outperforms the
basic and residual encoders, particularly at higher mes-
sage depths. As expected, models with a critic achieve
slightly higher RS-BPP values, reflecting their ability to
embed and recover data more accurately. However, the
improvement in RS-BPP is not as dramatic as the gains
seen in PSNR and SSIM, suggesting that the critic's pri-
mary benefit lies in improving image quality rather than
significantly boosting payload capacity.
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Fig. 5. Plot of PSNR metrics during 5 epochs of training KerasSteganoGAN with and without critic model

RS RS Mptric Logs for DEfenent Mestage Depthe

B h

daus Lags Dapth 2
mrnalual Lisgs Dupth 1

Gerse Logs Lepth 3
Dt 4
o Dagdh 4
e Logn Depih &
Bkt Lot Dth 3
Agatusl Loge Depth 5
Chseras Lot Dapth %
Bk L Dot &
Aswtual Lo Depth 6
Chwrvuse Loggs Dagth 6

Ao b

ISSN 2786-9024



ObuncntoBasibHa TexHiKa Ta aBToMaTU3al,in

T3. Ne5(37)'2025

Research Experiments And Results

These results highlight the consistent pattern
observed across metrics — models with a critic tend to
produce higher quality images, as evidenced by their
superior PSNR and SSIM values, while dense encoder
architectures excel in both image quality and data
embedding efficiency.

To better understand the effectiveness of our trained
models, there is table 1, which contains Decoder accu-
racy, PSNR, SSIM, and RS-BPP metrics for each KerasSteg-
anoGAN model with different data depth, encoder archi-
tecture, and critic model presence. Figure 7 presents the
original image in the first row, the stego-image created by
the KerasSteganoGAN model with critic, dense encoder,
and data-depth 6 trained on 5 epochs on the second row,
and their difference in the gray-scale on the third row.

The decoder accuracy remains high across all models
and data depths, particularly for smaller message depths

(1 and 2 bits per pixel). Both models with and without a
critic achieve nearly perfect accuracy at lower message
depths, with a slight drop as the data depth increases.
At data depth 6, the model with a critic shows slightly
better accuracy for the dense encoder (77%) compared
to the non-critic model (78%), indicating the critic's pos-
itive impact in higher payload scenarios.

RS-BPP, which measures the effective payload,
shows a consistent trend: the dense encoder performs
best across all data depths. For instance, at data depth
6, the dense encoder achieves an RS-BPP of 3.34 (with
critic) and 3.42 (without critic), outperforming both the
basic and residual encoders. The basic encoder shows
relatively lower RS-BPP across all configurations, with
values ranging from 0.98 at depth 1 to 2.84 at depth 6
(with a critic). In general, models without a critic show
slightly higher RS-BPP values, but the difference is not
significant.

Table 1. Metrics For Different Model Architecture And Payload Depth

Critic D Decoder Accuracy RS-BPP PSNR SSIM
Basic |Residual| Dense Basic |Residua|| Dense Basic |Residual| Dense Basic |Residua|| Dense
1 0.99 0.99 0.99 0.98 0.98 0.98 13.11 16.69 1444 0.47 0.63 0.52
2 0.98 0.97 0.98 1.93 1.91 1.95 12.13 1466 13.93 0.39 0.53 0.49
3 0.97 0.95 0.97 2.83 2.70 2.86 10.81 12.20 11.60 0.26 0.36 0.29
Yes 4 0.87 0.84 0.90 3.01 2.77 3.20 11.21 13.11  11.55 0.29 0.42 0.28
5 0.78 0.77 0.82 2.87 2.71 3.24 1199 1495 12.08 0.36 0.54 0.33
6 0.73 0.71 0.77 2.84 2.60 3.34 12.68 16.19 12.78 0.42 0.61 0.39
1 0.99 0.99 0.99 0.98 0.98 0.99 12.34 15.62 14.82 0.42 0.59 0.55
2 0.99 0.99 0.99 1.96 1.96 1.96 11.62 14.06 13.12 0.35 0.50 0.45
No 3 0.97 0.95 0.98 2.82 2.74 2.90 10.78 11.55 10.99 0.26 0.31 0.27
4 0.88 0.83 0.90 3.08 2.65 3.22 10.66 12.93 10.80 0.25 0.43 0.24
5 0.79 0.78 0.83 2.97 2.84 3.37 11.64 13.62 11.60 0.35 0.47 0.30
6 0.75 0.73 0.78 3.02 2.79 3.42 11.94 1505 11.99 0.38 0.55 0.34

Fig. 7. Original resized, callback, their difference images on 5 epochs of the Dense model
with critic and data-depth equals 6
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In terms of PSNR, the dense encoder consistently
performs better across all message depths compared
to the basic and residual encoders. For example, at data
depth 6, the dense encoder achieves a PSNR of 12.78
(with critic) and 11.99 (without critic), outperforming
the other two encoders. The critic-enhanced models
tend to have better PSNR values at higher data depths.
At data depth 6, the basic encoder with a critic achieves
a PSNR of 12.68 compared to 11.94 without a critic. This
indicates that the critic helps preserve image quality as
more data is embedded into the image.

SSIM results follow a similar pattern to PSNR, with
the dense encoder showing the best performance across
all message depths. For example, at data depth 6, the
dense encoder achieves an SSIM of 0.39 (with critic) and
0.34 (without critic). The critic-enhanced models con-
sistently achieve higher SSIM values across all configura-
tions. At data depth 6, the residual encoder with a critic
scores 0.61, compared to 0.55 without a critic, reinforc-
ing the idea that the critic network helps maintain the
structural integrity of the image. The residual encoder
benefits the most from the critic in terms of SSIM. For
instance, at data depth 6, the residual encoder with a
critic scores 0.61, significantly higher than the 0.55
scored by the non-critic model.

Dense encoder consistently outperforms both
basic and residual encoders across all metrics, show-
ing its strength in handling larger payloads (higher data
depths). Models with a critic generally perform better
in terms of PSNR and SSIM, indicating that the critic
helps improve image quality and structural similarity,
especially at higher data depths. The non-critic models
show slightly higher RS-BPP values, but the difference is
not substantial, suggesting that while the critic improves
image quality, it does not greatly impact the payload
capacity.

Conclusion

In this paper, we presented KerasSteganoGAN, a
TensorFlow-based reimplementation and extension of
the original SteganoGAN model, with key modifications,
including the removal of the Reed-Solomon encoding/
decoding process and the introduction of two distinct
model variants: with and without a critic network. Our
goal was to assess the impact of these changes on the
model's ability to hide and recover messages while
maintaining the quality of the steganographic images.

Through a comprehensive evaluation using RS-BPP,
PSNR, and SSIM metrics across different encoder-de-
coder architectures and message depths (ranging from
1 to 6 bits per pixel), we observed several important
trends:

- Dense encoders, regardless of whether a critic
was used, consistently outperformed both basic and
residual encoders in terms of both image quality and

data embedding efficiency. Dense connections allowed
for better feature reuse, resulting in higher RS-BPP,
PSNR, and SSIM values across all configurations.

- The critic network played a crucial role in improv-
ing image quality, particularly at higher message depths.
Models with a critic achieved higher PSNR and SSIM
values, indicating that the critic helped preserve both
the visual and structural integrity of the steganographic
images.

- While models without a critic achieved slightly
higher RS-BPP values, the improvement was marginal,
suggesting that the critic network primarily enhances
image quality rather than significantly increasing pay-
load capacity.

Overall, our results suggest that using a dense
encoder with a critic network yields the best trade-off
between payload capacity and image quality, making it
an ideal choice for high-capacity steganographic tasks.
However, given that all models were only trained for 5
epochs, our results also indicate that more extensive
training (at least 32 epochs, as used in the original Ste-
ganoGAN) would likely lead to further improvements
in performance, especially for more complex encoder
architectures like the dense encoder.

Future work will focus on exploring additional
encoder architectures and loss functions to further opti-
mize the performance and enhance its applicability in
real-world steganography scenarios. We plan to retrain
the model and perform a comparative analysis under
equivalent training conditions, such as training duration,
to ensure a fair evaluation of the model's improvements.
Additionally, we aim to generate images at their original
size to better reflect practical use cases and assess the
model’s performance with higher-resolution data.
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MOKPALLEHA CTETAHOIPA®IAl 30BPAXKEHDb
3A AOMOMOrO0 KERAS-STEGANOGAN:
GAN HA OCHOBI TENSORFLOW

Omutpo Xoma, €sreH balwkos
Cmezanoepaghia  300pasxcens — ye  npoyec
60yoosyeanns cexkpemnoi ingopmayii 6  yupposi
300padicents MaxKum YuHoM, wob cam gaxm icHy8aHHs
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nosioomnenns  sanuwiasca — Henomimuum.  OcmaHwi
docsieneHHs Y cghepi 2nubOKoe0 HABYAHHA, 30KpeMd
6 eenepamugHo-smazanvuux mepexcax (GAN), cymmeso
NOKPAWULU K NPONYCKHY 30AMHICHb CINe2an02paQiuHux
cucmem, max 1 AKicmb GIOMBOPEeHHA 300padiCEeHb.
Opueinanvha mooenv SteganoGAN, peanizoseana y Torch,
0ocsena HanucydacHiuux pesyromamis, 3abe3neyyouu
npuxogysanns 00 4.4 0im Ha nikcenb npu BUCOKIl
cmitikocmi 0o memodie cmezoananizy. Ilpome eniug
Kpumuxa (critic network) Ha Axicmv cmezanozpaii

ma cmabiibHicmb  HAGYAHHA  00CI  3AMUULAEMbCS
HeOOCmamnbo 6UBYEHUM.
A% yiu pobomi npeocmasiero Keras-

SteganoGAN — peanizayito ma posuiupenns SteganoGAN
Ha 6a3i TensorFlow, npushaueny 01 cUCmeMamuiHo2o
awanizy poai  Kpumuxa 6 npoyeci 3Ma2anbHO20
cmezanoepagiunoeo nasuanua. byno pospobreno ma
NOPIGHAHO 08I 6epCii MoOOeNi — 3 KpUmuKkom i 6e3 Hbo2o —
Ha OCHO8I mpbox apximekmyp eunkooepa: basic, residual
ma dense. Koowcny konghicypayiio nasuaiu npomszom
n’amu enox i3 emubunor nogioomaenHs 6i0 1 0o 6
6im, wo 0ano 3mo2y 8cebiyHO OOCAIOUMU KOMNPOMICU
MIDIC  EMHICTNIO  NPUXOBAHUX OAHUX, CHOMBOPEHHIM
300padicenHs ma MOYHICIIO 0eKOOYB8AHHA.

Kinvkicna oyinka euxonysanacs 3a 00NOMO20M0
CMAaHOapmHux Mempuk AKocmi 300pasiceHs
i cmezanoepagpiunoi echexmusnocmi, sxmouarowu PSNR,
SSIM, RS-BPP ma mounicme 0exodysanusi. Pezynomamu
NOKA3YI0Mb, WO HAABHICMb KPUMUKA NIOBUULYE BI3)ATbHY
SAKICMb  ma  cxodcicms  300padicenb  3a  HEBEIUKUX
HABAHMAJICEHb, Npome 1020 GNIUE 3MEHULYEMbCS
31 30inbenHamM enubunu nosioomnenus. Ompumani
pe3yibmamuy  Haoaroms HO8e PO3YMIHHS — 63A€EMOOIT
Midc  CKIAOHicmio eHKoOepd, OUHAMIKOI KPUMUKA
ma cme2aHocpaQiuHo  epexmusHicmio, a MaKoic
dopmyroms niorpyums 0 NOOAILUL020 B00CKOHANEHHS
cucmem cmeeanoepagii na 6asi GAN.

Knrouosi cnosa: SteganoGAN, Keras, TensorFlow,
cmezanoepagis 306padicenb, GAN, enxooep, Kpumux,
nponyckna 30amuicme, residual, dense, Odexodep,
3MacanbHe  HAGUAHHSA,  NPUXOBAHE  NOBIOOMIEHHS,
MEMPUKU CXOHCOCIMI.
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