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ABSTRACT
Image steganography is the process of embedding secret information within digital images such that the very 

presence of the message remains undetectable. Recent advances in deep learning, particularly in generative adversarial 
networks (GANs), have significantly improved both the payload capacity and perceptual quality of steganographic 
systems. The original SteganoGAN, implemented in Torch, achieved state-of-the-art performance by embedding up 
to 4.4 bits per pixel while maintaining strong resistance to steganalysis methods. However, the influence of the critic 
network on steganographic quality and learning stability remains insufficiently explored.

This paper presents Keras-SteganoGAN, a TensorFlow-based reimplementation and extension of SteganoGAN, 
designed to systematically analyze the role of the critic in adversarial steganographic training. Two variants of the 
model–one incorporating a critic and one without–were trained and compared across three encoder architectures: 
basic convolutional, residual, and dense. Each configuration was trained over five epochs with message depths 
ranging from 1 to 6 bits, allowing a comprehensive study of trade-offs between payload capacity, image distortion, 
and decoding accuracy.

Quantitative evaluation was conducted using standard image quality and steganographic metrics, including 
PSNR, SSIM, RS-BPP, and decoder accuracy. The results indicate that the inclusion of a critic improves perceptual 
quality and visual similarity at lower payloads, but its contribution diminishes as the message depth increases. These 
findings provide new insights into the interaction between encoder complexity, critic dynamics, and steganographic 
performance, offering guidance for the design of future GAN-based steganography systems.

Key words: SteganoGAN, Keras, TensorFlow, image steganography, GAN, encoder, critic network, payload 
capacity, residual, dense, decoder, adversarial learning, hidden message, similarity metrics.

Introduction 
The art and science of image steganography revolve 

around embedding secret information within an image 
so that the presence of the hidden data remains imper-
ceptible to observers. Unlike cryptography, where the 
primary goal is to secure the contents of the message 
by making it unreadable to adversaries, steganography 
goes a step further by ensuring that even the existence 
of the message is concealed. In typical usage scenarios, 
a sender encodes a secret message into a cover image, 
and transmits the image to a receiver who can extract 
the hidden data. This makes steganography particularly 
useful in situations where the transmission of encrypted 
messages might attract attention or raise suspicion.

The fundamental challenge of image steganogra-
phy is to maximize the amount of data that can be hid-
den in an image without introducing visible artifacts or 

detectable anomalies. Steganography should ideally pre-
serve the appearance of the cover image so that even 
sophisticated analysis tools or trained observers can-
not detect alterations. However, this balance between 
embedding capacity and image quality has proven dif-
ficult to achieve. Traditional image steganography tech-
niques, such as least significant bit (LSB) manipulation, 
can effectively hide small amounts of data but often 
introduce visible distortions when larger payloads are 
embedded. Moreover, automated steganalysis tools 
have become increasingly capable of detecting these 
modifications, limiting the effectiveness of these con-
ventional approaches.

For a long time, traditional steganographic methods 
were only able to achieve modest payload capacities, 
typically up to around 0.4 bits per pixel (bpp) [1]. As 
payloads increase beyond this threshold, the chances of 
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introducing detectable artifacts increase, and the cover 
image becomes more susceptible to analysis by auto-
mated steganalysis techniques. These tools can identify 
subtle inconsistencies in the image, such as irregularities 
in pixel distributions, that signal the presence of hidden 
data. In extreme cases, these distortions are noticeable 
to the human eye, rendering the steganographic tech-
nique ineffective for its purpose of secrecy.

In recent years, the rise of deep learning, particularly 
with the advent of neural networks, has significantly 
advanced the field of image steganography. Unlike tra-
ditional methods, which rely on predefined rules or 
statistical models to hide information, deep learning 
approaches have shown a remarkable ability to optimize 
both the payload capacity and image quality. These neu-
ral network-based methods are able to learn intricate 
patterns within images, making it possible to embed 
more data while minimizing detectable distortions. This 
has given rise to a new class of steganographic tech-
niques that leverage generative models, such as gener-
ative adversarial networks (GANs), to create more effi-
cient and effective steganographic systems.

Among these advancements is SteganoGAN, a Arti-
ficial Intelligence (AI) model developed by [2], which 
demonstrated the power of GANs in the realm of image 
steganography. SteganoGAN represents one of the 
first implementations of a fully end-to-end deep learn-
ing-based system for hiding arbitrary binary data in 
images, rather than simply embedding one image inside 
another. By employing a GAN architecture [3], Stegano-
GAN optimizes the perceptual quality of the generated 
steganographic images while simultaneously enhancing 
the embedding capacity. With the use of a critic network, 
the model is trained to produce steganographic images 
that are virtually indistinguishable from the original 
cover images, allowing it to evade detection by standard 
steganalysis tools. The original SteganoGAN achieved a 
payload capacity of up to 4.4 bits per pixel, a significant 
improvement over traditional methods.

However, despite these advancements, some 
aspects of SteganoGAN’s design were left unexplored 
in the original work. One such area is the exact process 
by which the message tensor is created. In SteganoGAN, 
messages are encoded using the Reed-Solomon error 
correction code, which is designed to improve the reli-
ability of message recovery by correcting errors in the 
decoded message. After encoding, the message is con-
verted to bits and packed into a tensor, with message 
bits placed sequentially, divided by 32 zero bits. This 
encoding method improves the error-correction capa-
bilities of the model, but it also adds complexity to the 
overall system.

In our work, we propose KerasSteganoGAN, a reim-
plementation of SteganoGAN in TensorFlow, with a key 
modification: the removal of Reed-Solomon encoding 

and decoding. By eliminating this step, we streamline the 
message embedding process while maintaining the core 
strengths of the GAN-based architecture. The motivation 
behind this change is to reduce computational overhead 
and complexity while still achieving effective message 
recovery. We also investigate the role of the critic net-
work by introducing two versions of KerasSteganoGAN – 
one with a critic network and one without – allowing us 
to explore how the inclusion of the critic affects image 
quality and steganographic performance.

Research Objectives And Tasks
The primary objective of this research is to develop 

and evaluate Keras-SteganoGAN, a TensorFlow-based 
reimplementation of the original SteganoGAN model, 
designed to simplify the message embedding process 
while maintaining high image quality and embedding 
capacity. By removing the Reed-Solomon error correc-
tion mechanism, the study aims to reduce computational 
complexity and training overhead without compromising 
the accuracy of message extraction. This streamlined 
architecture seeks to demonstrate that robust message 
recovery and imperceptible image quality can still be 
achieved through careful network design and optimiza-
tion within the GAN framework.

A secondary objective of this work is to analyze the 
influence of the critic network on the overall perfor-
mance of the model. To this end, two distinct versions 
of KerasSteganoGAN are implemented: one including a 
critic component and another operating without it. The 
comparative analysis between these variants focuses 
on evaluating their impact on key performance metrics 
such as payload capacity, decoding accuracy, Peak Sig-
nal-to-Noise Ratio (PSNR), and Structural Similarity Index 
Measure (SSIM). This comparison allows for a deeper 
understanding of how adversarial learning contributes 
to the balance between embedding fidelity and visual 
indistinguishability.

Finally, the research aims to empirically validate the 
effectiveness of KerasSteganoGAN through extensive 
experiments on benchmark image datasets. The study’s 
tasks include designing and training the models, meas-
uring and comparing their quantitative and qualitative 
performance, and analyzing trade-offs between compu-
tational efficiency and steganographic robustness. The 
results are expected to provide insights into optimizing 
GAN-based steganographic architectures for practical 
use, setting the groundwork for further exploration of 
adaptive and lightweight deep learning techniques in the 
field of image steganography.

Research Materials And Methods
SteganoGAN is a groundbreaking that leverages 

the power of GANs to tackle the challenges of image 
steganography. Traditional approaches to image 
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steganography often suffer from limited payload capac-
ity and the risk of introducing visible artifacts that can 
be detected by automated steganalysis tools. By using a 
GAN-based architecture, SteganoGAN overcomes these 
limitations, significantly enhancing the embedding rate 
while maintaining high image quality [4].

At its core, SteganoGAN is an end-to-end deep learn-
ing model that allows for the hiding of arbitrary binary 
data inside images, written with Python library called 
PyTorch. The model’s architecture consists of three 
main components: an encoder, a decoder, and a critic 
network. 

The encoder is responsible for embedding the secret 
message into the cover image, transforming it into a 
steganographic image. The decoder, on the other hand, 
works to recover the hidden message from the steg-
anographic image. The critic network plays the role of 
a discriminator in the GAN framework, evaluating how 
close the generated steganographic image is to the 
original cover image [5]. This adversarial relationship 
between the generator (encoder) and the critic enables 
the model to produce steganographic images that are 
nearly indistinguishable from the original ones, making 
it difficult for steganalysis tools to detect the presence 
of hidden data.

One of the key innovations in SteganoGAN is the 
use of multiple loss functions to optimize the encoder, 
decoder, and critic simultaneously. By balancing these 
losses – specifically, the decoding accuracy, the percep-
tual similarity between the cover and steganographic 
images, and the realism of the generated image – the 
model is able to achieve a high payload capacity while 
maintaining image fidelity.

The architecture of SteganoGAN is carefully designed 
to balance embedding capacity and image quality. 
It includes three key components: the encoder, the 

decoder, and the critic network, which together work 
within an adversarial training framework and shown 
on Figure 1. This allows SteganoGAN to hide arbitrary 
binary data in images while maintaining their visual 
integrity, like in [6].

Encoder Network
SteganoGAN incorporates three different encoder 

architectures, each designed to explore different meth-
ods of embedding messages into images: the basic 
encoder, the residual encoder, and the dense encoder. 
Each of these architectures (Figure 2) handles the fea-
ture extraction and message embedding processes 
differently, which impacts both the quality of the gen-
erated steganographic image and the model’s ability to 
recover the hidden message.

Basic Encoder – the the simplest variant, designed 
with a straightforward convolutional architecture. It 
starts by processing the cover image through several 
convolutional layers, which transform the image into a 
feature map. The binary message is then concatenated 
to these features and passed through additional convolu-
tional layers. The final output is a steganographic image 
that contains the embedded message. This architecture 
is relatively simple and fast to train, but its limitation is 
that it may not efficiently capture intricate image details 
or provide the best possible image quality when embed-
ding large amounts of data. The lack of skip connections 
or advanced feature reuse mechanisms means that the 
model might struggle with higher message depths or 
complex images. 

Residual Encoder – builds upon the basic encoder by 
introducing residual connections, a technique originally 
popularized by ResNet architectures [7]. In this design, 
after the message is concatenated to the image features 
and processed through the convolutional layers, the out-
put of the encoder is added to the original cover image. 

Fig. 1. Original SteganoGAN model architecture
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This means that the encoder is learning to produce a 
residual image – an image that represents the differ-
ence between the cover image and the steganographic 
image – rather than the steganographic image itself. The 
advantage of using residual connections is that they help 
prevent vanishing gradient problems during training 
and enable the model to focus on the minimal changes 
needed to embed the message. By only adjusting parts 
of the image where necessary, the residual encoder 
tends to produce higher-quality steganographic images, 
especially when dealing with larger payloads. This archi-
tecture also typically converges faster than the basic 
encoder.

Dense Encoder – the most advanced of the three 
and is inspired by the DenseNet architecture [8]. In this 
design, the output of each convolutional layer is densely 
connected to the inputs of all subsequent layers. In 
other words, the feature maps produced by each layer 
are concatenated with the feature maps of all previous 
layers, ensuring that the encoder reuses features across 
the network. This results in feature reuse, meaning that 
the model can more effectively capture complex image 
details and use the most relevant information for embed-
ding the message. Dense connections mitigate the van-
ishing gradient problem more effectively than residual 
connections and encourage the model to leverage both 
low-level and high-level features simultaneously. This 
makes the dense encoder particularly well-suited for sce-
narios where the payload is large or the image content is 
complex. However, the trade-off is that this architecture 
is more computationally expensive and requires more 
memory than the basic or residual encoders.

Decoder Network
In SteganoGAN, two decoder architectures are 

employed: the basic decoder and the dense decoder. 
The decoder’s primary role is to extract the hidden 
message from the steganographic image, and the effec-
tiveness of this process is crucial for ensuring accurate 
message recovery. The architecture of the decoder can 
significantly influence how well it performs under differ-
ent conditions, particularly when handling varying pay-
load sizes and complex image content.

Basic Decoder – follows a straightforward approach, 
much like the basic encoder. It consists of several convo-
lutional layers that transform the steganographic image 
back into a feature representation. These features are 
then processed to recover the original binary message. 
Just like Basic Endoder, the design of the basic decoder 
is simple, with no advanced connectivity mechanisms 
between layers. While the basic decoder is efficient 
and works well for smaller payloads, its simplicity can 
become a limiting factor when dealing with larger mes-
sage depths or more complex steganographic images 
[9-10]. It processes each layer sequentially, without tak-
ing advantage of previous layer outputs, which can lead 
to less accurate message recovery in more challenging 
scenarios. Should be mentioned that Basic Decoder only 
uses with Basic or Residual Encoder.

Dense Decoder – builds upon the same principle 
as the dense encoder, utilizing dense connections to 
enhance feature extraction and reuse. In this archi-
tecture, each layer’s output is concatenated with the 
outputs of all preceding layers. This ensures that every 
convolutional layer has access to the full set of features 

Fig. 2. Encoder different types (Basic, Residual and Dense)
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extracted by earlier layers, allowing the decoder to 
leverage both low-level and high-level information 
simultaneously.

The dense decoder is particularly well-suited for 
recovering messages from images where the message 
depth is high or the cover image is complex. By main-
taining access to all previous feature maps, the dense 
decoder can more effectively reconstruct the binary 
message. This architecture excels in scenarios where 
high accuracy is essential, as it mitigates the risk of losing 
critical information during the decoding process. 

Critic Network
The critic network is crucial to the adversarial train-

ing process. It distinguishes between real images (the 
original cover images) and fake images (the stegano-
graphic images generated by the encoder). The critic's 
feedback guides the encoder, pushing it to generate 
steganographic images that look more realistic and are 
harder to distinguish from the original cover images. 
The critic uses the Wasserstein loss, which is designed 
to improve the training stability of GANs and ensures 
that the generated images closely resemble real cover 
images [11-13].

Loss Functions
SteganoGAN employs three primary loss functions to 

optimize the encoder, decoder, and critic simultaneously:
−	 Decoder loss – measures how well the decoder 

D  recovers the hidden message in steganographic mes-
sage  X M,� � , where X  is original image, and M  is 
original message. It uses binary cross-entropy loss to 
compare the original message to the decoded message 
D X M ,� �� � . The goal is to minimize the error between 
the original and the recovered with decoder binary 
messages.

L Ed X C
CrossEntorpy D X M M� � �� �� �E P~ , , � � � � � � � � � � � � � � � � � � � � � � � � � �� � � 1� �    (1)

−	 Image similarity loss – this loss ensures that the 
steganographic image remains visually similar to the 
original cover image. The image similarity loss is calcu-
lated using the mean square error (MSE), which meas-
ures the difference between each pixel in the cover 
image and the corresponding pixel in the steganographic 
image. Minimizing this error helps preserve the appear-
ance of the cover image.

L Es X C W H
X X M�

� �
� � � � �E P~ ,

1
3

2
2

2 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �       (2)

−	 Realness loss – returns critic C  score of stegano-
graphic image.

	 L Er X C
C X M� � �� �E P~ , � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � 3� �                 (3)

The total loss is the sum of these three losses: the 
decoder loss, the image similarity loss, and the realness 
loss. 

	 minimize d s r  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� 4� �                     (4)

By minimizing this combined loss, SteganoGAN opti-
mizes the quality of the steganographic images while 
ensuring reliable message recovery. SteganoGAN uses 
this combined loss to train both encoder and decoder 
model weights.

Critic loss – evaluates how realistic the stegano-
graphic images are compared to the original cover 
images.

L Ec X XC C
C X C X M� � � � � �� � � �E EP P~ ~ , � � � � � � � � � � � � � � � � � � � � � � � � � � � � 5        (5)

The critic loss is based on the Wasserstein distance, 
which compares the distributions of the real images 
(cover images) and the generated images (stegano-
graphic images). The encoder aims to generate images 
that minimize the critic's ability to distinguish between 
the real and fake images.

Keras Steganogan Architecture 
KerasSteganoGAN is a TensorFlow-based reimple-

menta-tion of the original SteganoGAN architecture with 
several notable modifications to simplify the message 
encoding and decoding processes while maintaining the 
overall structure and functionality of the original model. 
Instead of modifying original PyTotch-based StegnoGAN, 
KerasSteganoGAN was rewritten with more functional 
and popular Python library called TensorFlow. First rea-
son to make TensorFlow-based SteganoGAN is possibil-
ity of using it only with definite version of PyTorch library 
and Python. Another reason is possibility of using LiteRT 
library of making lightweighted mobile versions of AI 
models.

Key modification in KerasSteganoGAN is the removal 
of the Reed-Solomon error correction method, which 
was previously used in SteganoGAN to enhance message 
recovery accuracy. In SteganoGAN, the binary message 
was first encoded with Reed-Solomon, converted into 
bits, and then placed into a tensor, separated by blocks 
of zero bits. This process added computational complex-
ity while improving error tolerance during decoding.

In KerasSteganoGAN, we opted to remove the 
Reed-Solomon encoding and decoding steps, simplifying 
the model’s structure. By doing so, we rely solely on the 
AI models (encoder and decoder) to manage the embed-
ding and extraction of messages. This change reduces 
overhead and streamlines the overall pipeline without 
significantly impacting performance. The hidden mes-
sage is now directly embedded into the cover image, and 
its recovery is entirely dependent on the performance of 
the neural network models.

Despite these modifications, the core components 
of the architecture remain intact, including the encod-
er-decoder structure and the option to utilize differ-
ent types of encoders (basic, residual, and dense). The 
removal of Reed-Solomon encoding enables the model 
to focus purely on leveraging the strengths of the neural 
network for accurate message recovery, which simplifies 
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the training and deployment processes while maintain-
ing high payload capacity and image quality.

Another significant change that contains KerasSte-
ganoGAN is that we use Sigmoid activation function at 
the last convolution layers of each encoder and decoder 
models in order to return data in a range of [-1, 1]. In the 
case of the encoder, returned data will be converted to 
an image, or in the case of the decoder, it will be con-
verted to a tensor of binary data. In the original Stega-
noGAN model, both encoder and decoder models have 
no activation functions at the last convolution layers 
[14-15].

KerasSteganoGAN architecture allows generation of 
steganographic images with the size of 128x128 pixels, 
though SteganoGAN allows generation of stego-images 
with original size of cover-images. The reason of this is 
the difficulty of the implementation of such an architec-
ture as well as the complexity of training.

One of the key explorations in KerasSteganoGAN is 
the introduction of two distinct model variants: with a 
critic and without a critic. In the original SteganoGAN, 
the critic network played an important role in the adver-
sarial training process by helping the model learn to gen-
erate steganographic images that are indistinguishable 
from real images. The critic evaluates how realistic the 
generated steganographic images are and provides feed-
back to improve the encoder's output.

In KerasSteganoGAN, we decided to investigate the 
specific impact of the critic network on the quality of 
the steganographic images and the accuracy of mes-
sage recovery. To do so, we created two versions of the 
model:

−	 One version includes the critic network, mimick-
ing the adversarial setup from SteganoGAN.

−	 The other version operates without a critic net-
work, meaning the encoder and decoder are trained 
without the additional adversarial feedback.

The motivation for this comparison is to analyze 
whether the critic network contributes significantly 
to improving the visual quality of the images and the 
reliability of message recovery or if a non-adversarial 
approach can yield comparable results. Both variants 
still use the same encoder-decoder structures, with the 
option to choose between basic, residual, and dense 
encoder types, but the inclusion or exclusion of the critic 
alters the training dynamics. Figure 3 presents KerasSte-
ganoGAN architecture without critic with basic or dense 
decoder types while encoder types could be the same 
as at the original SteganoGAN: basic, residual or dense.

Training both model variants allows us to com-
pare the influence of adversarial feedback in the GAN 
framework versus simpler encoder-decoder setups. This 
exploration is aimed at understanding whether the crit-
ic’s complexity justifies its potential benefits, especially 
in terms of computational cost and training time.

Training And Comparision
To thoroughly evaluate the performance of KerasSte-

ganoGAN models with and without the critic network, 
we used a set of key metrics that assess both the quality 
of the steganographic images and the effectiveness of 
message recovery. These metrics – RS-BPP (Reed-Solo-
mon bits per pixel), PSNR (Peak Signal-to-Noise Ratio), 
and SSIM (Structural Similarity Index Measure) – are 
standard in the field of steganography, providing insights 

Fig. 3. Critic-less KerasSteganoGAN architecture with basic or dense decoder types
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into the image quality, message capacity, and accuracy 
of the decoder. Detailed description of these metrics is 
provided in [16]. 

To train our model Div2K [17] dataset was used with 
batch size of 4. The train dataset consists of 700 pictures 
of different sizes, while the validation dataset consists 
of only 100 pictures. Due to the absence of GPU with 
CUDA cores, our neural network training was done on 
CPU Intel i9, and took 15 minutes to train the model on 
5 epochs.

PSNR measures the difference in quality between 
the steganographic image and the original cover image. 
A higher PSNR value indicates that the two images are 
more similar, with fewer distortions or artifacts in the ste-
ganographic image. In the context of KerasSteganoGAN, 
we use PSNR to evaluate how well the model preserves 
the visual quality of the cover image after embedding 
the hidden message. The influence of the critic network 
is particularly highlighted by this metric, as models with 
a critic are expected to generate steganographic images 
that closely resemble the cover images.

SSIM is another metric used to evaluate the quality 
of the steganographic image, focusing on the perceptual 
similarity between the cover and stego-images. It meas-
ures structural changes, taking into account luminance, 
contrast, and texture. Like PSNR, higher SSIM values 
indicate better preservation of the image structure. To 
visualize the impact of the critic network on image qual-
ity, plots of SSIM for different encoder types and data 
depths will demonstrate how the critic influences the 
visual similarity between the stego and cover images.

The RS-BPP metric calculates the effective number of 
bits per pixel that can be reliably hidden and recovered in 
the image. This metric is derived from the decoder accu-
racy and the message depth. Although we removed the 
Reed-Solomon encoding/decoding process in KerasSte-
ganoGAN, we still use the RS-BPP formula to estimate 

the capacity of the model. It provides a clear measure of 
how efficiently the model can embed and recover data, 
particularly when comparing different encoder types 
and their ability to handle various message depths.

These three metrics allow us to assess the perfor-
mance of KerasSteganoGAN from different perspectives: 
PSNR and SSIM evaluate the visual fidelity of the images, 
while RS-BPP measures the model’s capacity to embed 
and recover data effectively. The upcoming sections will 
illustrate these metrics through various plots, particu-
larly focusing on how the inclusion of the critic network 
affects image quality and message recovery.

To comprehensively compare the performance of 
KerasSteganoGAN models with and without a critic net-
work, we trained both variants using three encoder-de-
coder configurations:

−	 basic encoder – basic decoder;
−	 residual encoder – basic decoder;
−	 dense encoder – dense decoder.
For each of these encoder-decoder pairs, we exper-

imented with six different message depths (1 to 6 bits 
per pixel), varying the amount of data embedded in each 
image. Each configuration was trained for 5 epochs, as 
this was sufficient to observe the general trends in the 
models’ performance while keeping the training time 
manageable. The impact of these choices on the per-
formance of the models is reflected in several metrics – 
PSNR, SSIM, and RS-BPP – as shown in the figures that 
follow.

In Figure 4, we present PSNR results for all three 
encoder configurations (basic, residual, and dense) 
across different message depths. Here, it becomes evi-
dent that models with a critic network generally achieve 
higher PSNR values, particularly at higher data depths, 
indicating better preservation of image quality. The 
residual encoder, paired with a basic decoder, shows a 
significant improvement in PSNR compared to the basic 

Fig. 4. Plot of SSIM metrics during 5 epochs of training KerasSteganoGAN with and without critic model
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encoder, especially when trained with a critic. The dense 
encoder achieves the best overall results, with PSNR val-
ues staying high even with 6 bits per pixel of data, high-
lighting its superior ability to handle larger payloads.

Similarly, Figure 5 showcases the SSIM metric for 
the same encoder-decoder configurations. The dense 
encoder consistently achieves higher SSIM values, indi-
cating a better structural similarity between the stego 
and cover images. Models with a critic tend to perform 
better in terms of SSIM across all data depths, reinforc-
ing the idea that the critic helps the encoder preserve 
image structure more effectively.

The RS-BPP metric (shown in Figure 6) provides 
insight into the effective payload capacity of the 
models. 

Here, the dense encoder again outperforms the 
basic and residual encoders, particularly at higher mes-
sage depths. As expected, models with a critic achieve 
slightly higher RS-BPP values, reflecting their ability to 
embed and recover data more accurately. However, the 
improvement in RS-BPP is not as dramatic as the gains 
seen in PSNR and SSIM, suggesting that the critic's pri-
mary benefit lies in improving image quality rather than 
significantly boosting payload capacity.

Fig. 5. Plot of PSNR metrics during 5 epochs of training KerasSteganoGAN with and without critic model

Fig. 6. RS-BPP metric during training KerasSteganoGAN with different payloads for all types of Encoder model
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Research Experiments And Results
These results highlight the consistent pattern 

observed across metrics – models with a critic tend to 
produce higher quality images, as evidenced by their 
superior PSNR and SSIM values, while dense encoder 
architectures excel in both image quality and data 
embedding efficiency.

To better understand the effectiveness of our trained 
models, there is table 1, which contains Decoder accu-
racy, PSNR, SSIM, and RS-BPP metrics for each KerasSteg-
anoGAN model with different data depth, encoder archi-
tecture, and critic model presence. Figure 7 presents the 
original image in the first row, the stego-image created by 
the KerasSteganoGAN model with critic, dense encoder, 
and data-depth 6 trained on 5 epochs on the second row, 
and their difference in the gray-scale on the third row.

The decoder accuracy remains high across all models 
and data depths, particularly for smaller message depths 

(1 and 2 bits per pixel). Both models with and without a 
critic achieve nearly perfect accuracy at lower message 
depths, with a slight drop as the data depth increases. 
At data depth 6, the model with a critic shows slightly 
better accuracy for the dense encoder (77%) compared 
to the non-critic model (78%), indicating the critic's pos-
itive impact in higher payload scenarios.

RS-BPP, which measures the effective payload, 
shows a consistent trend: the dense encoder performs 
best across all data depths. For instance, at data depth 
6, the dense encoder achieves an RS-BPP of 3.34 (with 
critic) and 3.42 (without critic), outperforming both the 
basic and residual encoders. The basic encoder shows 
relatively lower RS-BPP across all configurations, with 
values ranging from 0.98 at depth 1 to 2.84 at depth 6 
(with a critic). In general, models without a critic show 
slightly higher RS-BPP values, but the difference is not 
significant.

Table 1. Metrics For Different Model Architecture And Payload Depth

Critic D Decoder Accuracy RS-BPP PSNR SSIM
Basic Residual Dense Basic Residual Dense Basic Residual Dense Basic Residual Dense

Yes

1 0.99 0.99 0.99 0.98 0.98 0.98 13.11 16.69 14.44 0.47 0.63 0.52
2 0.98 0.97 0.98 1.93 1.91 1.95 12.13 14.66 13.93 0.39 0.53 0.49
3 0.97 0.95 0.97 2.83 2.70 2.86 10.81 12.20 11.60 0.26 0.36 0.29
4 0.87 0.84 0.90 3.01 2.77 3.20 11.21 13.11 11.55 0.29 0.42 0.28
5 0.78 0.77 0.82 2.87 2.71 3.24 11.99 14.95 12.08 0.36 0.54 0.33
6 0.73 0.71 0.77 2.84 2.60 3.34 12.68 16.19 12.78 0.42 0.61 0.39

No

1 0.99 0.99 0.99 0.98 0.98 0.99 12.34 15.62 14.82 0.42 0.59 0.55
2 0.99 0.99 0.99 1.96 1.96 1.96 11.62 14.06 13.12 0.35 0.50 0.45
3 0.97 0.95 0.98 2.82 2.74 2.90 10.78 11.55 10.99 0.26 0.31 0.27
4 0.88 0.83 0.90 3.08 2.65 3.22 10.66 12.93 10.80 0.25 0.43 0.24
5 0.79 0.78 0.83 2.97 2.84 3.37 11.64 13.62 11.60 0.35 0.47 0.30
6 0.75 0.73 0.78 3.02 2.79 3.42 11.94 15.05 11.99 0.38 0.55 0.34

Fig. 7. Original resized, callback, their difference images on 5 epochs of the Dense model  
with critic and data-depth equals 6
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In terms of PSNR, the dense encoder consistently 
performs better across all message depths compared 
to the basic and residual encoders. For example, at data 
depth 6, the dense encoder achieves a PSNR of 12.78 
(with critic) and 11.99 (without critic), outperforming 
the other two encoders. The critic-enhanced models 
tend to have better PSNR values at higher data depths. 
At data depth 6, the basic encoder with a critic achieves 
a PSNR of 12.68 compared to 11.94 without a critic. This 
indicates that the critic helps preserve image quality as 
more data is embedded into the image.

SSIM results follow a similar pattern to PSNR, with 
the dense encoder showing the best performance across 
all message depths. For example, at data depth 6, the 
dense encoder achieves an SSIM of 0.39 (with critic) and 
0.34 (without critic). The critic-enhanced models con-
sistently achieve higher SSIM values across all configura-
tions. At data depth 6, the residual encoder with a critic 
scores 0.61, compared to 0.55 without a critic, reinforc-
ing the idea that the critic network helps maintain the 
structural integrity of the image. The residual encoder 
benefits the most from the critic in terms of SSIM. For 
instance, at data depth 6, the residual encoder with a 
critic scores 0.61, significantly higher than the 0.55 
scored by the non-critic model.

Dense encoder consistently outperforms both 
basic and residual encoders across all metrics, show-
ing its strength in handling larger payloads (higher data 
depths). Models with a critic generally perform better 
in terms of PSNR and SSIM, indicating that the critic 
helps improve image quality and structural similarity, 
especially at higher data depths. The non-critic models 
show slightly higher RS-BPP values, but the difference is 
not substantial, suggesting that while the critic improves 
image quality, it does not greatly impact the payload 
capacity.

Conclusion
In this paper, we presented KerasSteganoGAN, a 

TensorFlow-based reimplementation and extension of 
the original SteganoGAN model, with key modifications, 
including the removal of the Reed-Solomon encoding/
decoding process and the introduction of two distinct 
model variants: with and without a critic network. Our 
goal was to assess the impact of these changes on the 
model's ability to hide and recover messages while 
maintaining the quality of the steganographic images.

Through a comprehensive evaluation using RS-BPP, 
PSNR, and SSIM metrics across different encoder-de-
coder architectures and message depths (ranging from 
1 to 6 bits per pixel), we observed several important 
trends:

−	 Dense encoders, regardless of whether a critic 
was used, consistently outperformed both basic and 
residual encoders in terms of both image quality and 

data embedding efficiency. Dense connections allowed 
for better feature reuse, resulting in higher RS-BPP, 
PSNR, and SSIM values across all configurations.

−	 The critic network played a crucial role in improv-
ing image quality, particularly at higher message depths. 
Models with a critic achieved higher PSNR and SSIM 
values, indicating that the critic helped preserve both 
the visual and structural integrity of the steganographic 
images.

−	 While models without a critic achieved slightly 
higher RS-BPP values, the improvement was marginal, 
suggesting that the critic network primarily enhances 
image quality rather than significantly increasing pay-
load capacity.

Overall, our results suggest that using a dense 
encoder with a critic network yields the best trade-off 
between payload capacity and image quality, making it 
an ideal choice for high-capacity steganographic tasks. 
However, given that all models were only trained for 5 
epochs, our results also indicate that more extensive 
training (at least 32 epochs, as used in the original Ste-
ganoGAN) would likely lead to further improvements 
in performance, especially for more complex encoder 
architectures like the dense encoder.

Future work will focus on exploring additional 
encoder architectures and loss functions to further opti-
mize the performance and enhance its applicability in 
real-world steganography scenarios. We plan to retrain 
the model and perform a comparative analysis under 
equivalent training conditions, such as training duration, 
to ensure a fair evaluation of the model's improvements. 
Additionally, we aim to generate images at their original 
size to better reflect practical use cases and assess the 
model’s performance with higher-resolution data.
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ПОКРАЩЕНА СТЕГАНОГРАФІЯ ЗОБРАЖЕНЬ  
ЗА ДОПОМОГОЮ KERAS-STEGANOGAN:  

GAN НА ОСНОВІ TENSORFLOW

Дмитро Хома, Євген Башков
Стеганографія зображень – це процес 

вбудовування секретної інформації в цифрові 
зображення таким чином, щоб сам факт існування 
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повідомлення залишався непомітним. Останні 
досягнення у сфері глибокого навчання, зокрема 
в генеративно-змагальних мережах (GAN), суттєво 
покращили як пропускну здатність стеганографічних 
систем, так і якість відтворення зображень. 
Оригінальна модель SteganoGAN, реалізована у Torch, 
досягла найсучасніших результатів, забезпечуючи 
приховування до 4.4 біт на піксель при високій 
стійкості до методів стегоаналізу. Проте вплив 
критика (critic network) на якість стеганографії 
та стабільність навчання досі залишається 
недостатньо вивченим.

У цій роботі представлено Keras-
SteganoGAN – реалізацію та розширення SteganoGAN 
на базі TensorFlow, призначену для систематичного 
аналізу ролі критика в процесі змагального 
стеганографічного навчання. Було розроблено та 
порівняно дві версії моделі – з критиком і без нього – 
на основі трьох архітектур енкодера: basic, residual 
та dense. Кожну конфігурацію навчали протягом 
п’яти епох із глибиною повідомлення від 1 до 6 
біт, що дало змогу всебічно дослідити компроміси 
між ємністю прихованих даних, спотворенням 
зображення та точністю декодування.

Кількісна оцінка виконувалася за допомогою 
стандартних метрик якості зображень 
і стеганографічної ефективності, включаючи PSNR, 
SSIM, RS-BPP та точність декодування. Результати 
показують, що наявність критика підвищує візуальну 
якість та схожість зображень за невеликих 
навантажень, проте його вплив зменшується 
зі збільшенням глибини повідомлення. Отримані 
результати надають нове розуміння взаємодії 
між складністю енкодера, динамікою критика 
та стеганографічною ефективністю, а також 
формують підґрунтя для подальшого вдосконалення 
систем стеганографії на базі GAN.

Ключові слова: SteganoGAN, Keras, TensorFlow, 
стеганографія зображень, GAN, енкодер, критик, 
пропускна здатність, residual, dense, декодер, 
змагальне навчання, приховане повідомлення, 
метрики схожості.
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