COMPARATIVE ANALYSIS OF MODELING METHODS AND TECHNOLOGIES IN CYBERSECURITY
DOI:
https://doi.org/10.32782/2786-9024/v3i5(37).344520Keywords:
cybersecurity, modeling, machine learning, digital twins, graph models, attack simulation.Abstract
The cybersecurity landscape is characterized by high complexity and dynamism, necessitating advanced modeling methods for threat analysis, risk prediction, and evaluation of protective measures. This article presents a detailed comparative analysis of traditional and contemporary modeling approaches in cybersecurity, including mathematical, logical, and hierarchical modeling, attack simulations and Breach and Attack Simulation (BAS), agent-based modeling, digital twins, as well as methods based on machine learning, deep learning, game theory, graph structures, and large language models (LLMs). Each method is examined in terms of its operational principles, key advantages, limitations, and practical applications. Particular attention is given to the synergy and complementarity of these approaches, which are critical for developing comprehensive and adaptive cybersecurity systems. Traditional methods, such as mathematical modeling, provide a formal basis for analysis but may oversimplify real-world scenarios. Contemporary approaches, including machine learning and digital twins, enable the processing of large data volumes and modeling of complex dynamic interactions, though they require significant computational resources and accurate data. Game theory and graph models offer strategic and contextual analysis, while large language models open new possibilities for automating threat analysis, despite their reliability limitations. The integration of these methods forms the foundation for hybrid solutions that mitigate the shortcomings of individual approaches, enhancing overall protection efficacy. The article also highlights challenges related to computational complexity, uncertainty, and ethical considerations, and outlines future directions, such as improving explainable AI, resilience to adversarial attacks, and simulation realism.
References
S. A. Sharaf, M.A.A. Alqaness, M.A. Alghamdi, A.S. Alqahtani, A.M. Alshahrani, “Advanced mathematical modeling of mitigating security threats in smart grids through deep ensemble model,” Sci. Rep., vol. 14, no. 23069, Oct. 2024. DOI: 10.1038/s41598-024-74733-6. URL: https://surl.lu/ umzyfz. Дата звернення: 15.06.2025.
M. Homaei, Ó. Mogollón-Gutiérrez, J. Carlos Sancho, M. Ávila & A. Caro, “A review of digital twins and their application in cybersecurity based on artificial intelligence,” Artif. Intell. Rev., vol. 57, no. 201, Jul. 2024. DOI: 10.1007/s10462-024-10805-3. URL: https://surl.li/asmirk. Дата звернення: 15.06.2025.
I. Vourganas, A.L. Michala, “Applications of machine learning in cyber security: A review,” J. Cybersecurity Privacy, vol. 4, no. 4, pp. 972–992, Dec. 2024. DOI: 10.3390/ jcp4040045. URL: https://surl.li/vdlxkl. Дата звернення: 15.06.2025.
F. Sufi and M. Alsulami, “Mathematical modeling and clustering framework for cyber threat analysis across industries,” Mathematics, vol. 13, no. 4, p. 655, Feb. 2025. DOI: 10.3390/math13040655. URL: https://surl.li/fgrjnf. Дата звернення: 15.06.2025.
Y. Miao, L. Pan, et al., “Machine learning based cyber attacks targeting on controlled information: A survey,” arXiv:2102.07969, Feb. 2021 URL: https://surl.li/hmyhes. Дата звернення: 15.06.2025.
J. Vitorino, I. Praça, E. Maia, L. Sousa, and S. Jardim, “A Comparative Analysis of Machine Learning Techniques for IoT Intrusion Detection,” arXiv:2111.13149, Nov. 2021. URL: https://surli.cc/vlcuxu. Дата звернення: 15.06.2025.
H. Kavak, J.J. Padilla, D. Vernon-Bido, S.Y. Diallo, R. Gore, and S. Shetty, “Simulation for cybersecurity: State of the art and future directions,” J. Cybersecurity, vol. 7, no. 1, p. tyab005, Mar. 2021. DOI: 10.1093/cybsec/tyab005. URL: https://surl.lu/crguxz. Дата звернення: 15.06.2025.
XM Cyber, “Seeing what attackers see: How attack graphs help you stay ahead,” Jan. 2025. URL: https://surli.cc/ dfwcym. Дата звернення: 15.06.2025.
S. Chong, J. Guttman, A. Datta, A. Myers, B. Pierce, P. Schaumont, T. Sherwood, N. Zeldovich, “Report on the NSF Workshop on Formal Methods for Security,” arXiv:1608.00678, Aug. 2016. URL: https://surl.gd/sgrcyr. Дата звернення: 15.06.2025.
P.Y.A. Ryan, “Mathematical Models of Computer Security,” in Foundations of Security Analysis and Design (FOSAD 2000), vol. 2171, Lecture Notes in Computer Science, R. Focardi and R. Gorrieri, Eds. Berlin, Germany: Springer, 2001, pp. 1–62. DOI: 10.1007/3-540-45608-2_1. URL: https://surl.li/egqhjf. Дата звернення: 15.06.2025.
F.S. Passino, N.M. Adams, E.A.K. Cohen, M. Evangelou, and N.A. Heard, “Statistical Cybersecurity: A Brief Discussion of Challenges, Data Structures, and Future Directions,” Harvard Data Science Review, vol. 5, no. 1, Mar. 2023. DOI: 10.1162/99608f92.240383c7. URL: https:// surli.cc/foscla. Дата звернення: 15.06.2025.
P. Mahadevappa, S.M. Muzammal, and R.K. Murugesan, “A Comparative Analysis of Machine Learning Algorithms for Intrusion Detection in Edge-Enabled IoT Networks,” arXiv:2111.01383, Nov. 2021. URL: https://surl. li/zwaisx. Дата звернення: 15.06.2025.
К. Mohamed, “Machine learning techniques to address cybersecurity,” arXiv:2302.12415, Feb. 2023. URL: https://surl.lu/tdmavn. Дата звернення: 15.06.2025.
D. Garton, “Purdue model framework for industrial control systems & cybersecurity segmentation,” U.S. Dept. Energy/National Petroleum Council, Topic Paper 4–14, Jul. 2019. URL: https://surli.cc/fmkjby. Дата звернення: 15.06.2025.
I. Sayar, N. Messe, S. Ebersold, and J.M. Bruel, “From What to How: A Taxonomy of Formalized Security Properties,” arXiv:2505.14514, May 2025. URL: https://surl. lu/nwovtz. Дата звернення: 15.06.2025.
Wikipedia, “Attack trees,” Jan. 2025. URL: https://surl.li/ dbzvmq. Дата звернення: 15.06.2025.
Picus Security, “What is attack simulation,” Jan. 2025. URL: https://surl.li/cifqpc. Дата звернення: 15.06.2025.
Pynetlabs, “Top 10 network simulation tools,” Jan. 2025. URL: https://surl.li/qesago. Дата звернення: 15.06.2025.
Hoxhunt, “Cyber Security Simulation Training: How it Works + Best Practices,” Jan. 2025. URL: https://surl.li/ cbjkeq. Дата звернення: 15.06.2025.
Picus Security, “Everything You Need to Know About BAS Tools,” Jan. 2025. URL: https://surli.cc/exllfj. Дата звернення: 15.06.2025. [21] Softprom, “Vulnerability management vs. penetration testing vs. breach and attack simulation,” Jan. 2025. URL: https://surl.li/afkwyc. Дата звернення: 15.06.2025.
CyberProof, “Penetration Testing vs Breach and Attack Simulator: Key Differences and Why It Matters,” Jan. 2025. URL: https://surl.li/nxbard. Дата звернення: 15.06.2025.
SCYTHE, “Top 10 breach and attack simulation (BAS) tools,” Jan. 2025. URL: https://surli.cc/ujxueh. Дата звер- нення: 15.06.2025. [24] A. Vestad and B. Yang, “A survey of agent-based modeling for cybersecurity,” in AHFE Open Access Proceedings, vol. 127, pp. 83–93, Jul. 2024. URL: https://surl.lu/ wcoxjx. Дата звернення: 15.06.2025.
F.K. Batista, A.M. del Rey, and A. Queiruga-Dios, “A New Individual-Based Model to Simulate Malware Propagation in Wireless Sensor Networks,” Mathematics, vol. 8, no. 3, p. 410, Mar. 2020. DOI: 10.3390/math8030410. URL: https://surl.li/yvuqfp. Дата звернення: 15.06.2025.
J. Soule, J. Jamont, M. Occello, P. Theron, and L. Traonouez, “Towards a multi-agent simulation of cyber-attackers and cyber-defenders battles,” arXiv:2506.04849, Jun. 2025. URL: https://surl.li/jrkiup. Дата звернення: 15.06.2025.
A. Bose, and K. Shin, “Agent-based modeling of malware dynamics in heterogeneous environments,” Security and Communication Networks, vol. 6, no. 12, pp. 1–8, Dec. 2013. URL: https://surl.li/akjovc. Дата звернення: 15.06.2025.
E.C. Balta, M. Pease, J. Moyne, K. Barton, and D.M. Tilbury, “Digital Twin-Based Cyber-Attack Detection Framework for Cyber-Physical Manufacturing Systems,” IEEE Transactions on Automation Science and Engineering, vol. 21, no. 3, pp. 3245–3260, Jul. 2024. DOI: 10.1109/ TASE.2023.3243147.
K. Shaukat, S. Luo, V. Varadharajan, I.A. Hameed, S. Chen, D. Liu, and J. Li, “Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity,” Energies, vol. 13, no. 10, p. 2509, May 2020. DOI: 10.3390/en13102509.
CrowdStrike, “CrowdStrike machine learning in cybersecurity,” Jan. 2025. URL: https://surl.li/yfqmjm. Дата звер- нення: 15.06.2025.
G. Apruzzese, P. Laskov, E. Montes de Oca, W. Mallouli, L. Brdalo Rapa, A.V. Grammatopoulos, and F. Di Franco, “The Role of Machine Learning in Cybersecurity,” Digital Threats: Research and Practice, vol. 4, no. 1, Art. no. 8, pp. 1–38, Mar. 2023. DOI: 10.1145/3545574. URL: https://surl.li/rpjhxe. Дата звернення: 15.06.2025.
P. Maniriho, A.N. Mahmood, and M.J.M. Chowdhury, “Deep learning models for detecting malware attacks,” arXiv:2209.03622, Jan. 2024 URL: https://surl.li/kvdwjl. Дата звернення: 15.06.2025.
M.N. Uddin, Y. Zhang, and X. Hei, “Deep learning aided software vulnerability detection: A survey,” arXiv:2503.04002, Mar. 2025. URL: https://surl.li/njcajz. Дата звернення: 15.06.2025.
M. Hesham, M. Essam, M. Bahaa, A. Mohamed, M. Gomaa, M. Hany, and W. Elsersy, “Evaluating Predictive Models in Cybersecurity: A Comparative Analysis of Machine and Deep Learning Techniques for Threat Detection,” arXiv:2407.06014, Jul. 2024. URL: https://surl.li/ grzpge. Дата звернення: 15.06.2025.
B. Collins, S. Xu, and P.N. Brown, “Game-Theoretic Cybersecurity: the Good, the Bad and the Ugly,” arXiv:2401.13815, Jan. 2024. URL: https://surl.li/jkxpct. Дата звернення: 15.06.2025.
L. Zhang, Q. Zhu, and Y. Xie, “Improving network threat detection by knowledge graph, large language model, and imbalanced learning,” arXiv:2501.16393, May. 2025. URL: https://surli.cc/bqlnzd. Дата звернення: 15.06.2025.
PuppyGraph, “Cyber Graph: Enhancing Cybersecurity with Graph Intelligence,” Jan. 2025. URL: https://surl.li/ yfugrw. Дата звернення: 15.06.2025.
X. Zhang, “Graph neural networks in network security: From theoretical foundations to applications,” in Proc. Americas Conf. Inf. Syst. (AMCIS), Aug. 2025, pp. 1–10. URL: https://surli.cc/wpkgob. Дата звернення: 15.06.2025.
V. Khurana and N. Kumar, “Graph Neural Networks for Cybersecurity Applications in Network Intrusion and Vulnerability Analysis,” in RADemics Research Institute, Chapter 8, Jan. 2025. URL: https://surl.li/tchiff. Дата звернення: 15.06.2025.
Bolster.ai, “Large Language Models for Cybersecurity: The Role of LLMs in Threat Hunting,” Apr. 2025. URL: https://surl.li/olyczz. Дата звернення: 15.06.2025.
H. Xu, and et al., “Large language models for cyber security: A systematic literature review,” arXiv:2405.04760, Jul 2024. URL: https://surl.li/coqqui. Дата звернення: 15.06.2025.
Z. Liu, “Multi-Agent Collaboration in Incident Response with Large Language Models,” arXiv:2412.00652, Dec. 2024. URL: https://surl.li/aghvvq. Дата звернення: 15.06.2025.
E. Mezzi, F. Massacci, and K. Tuma, “Large language models are unreliable for cyber threat intelligence,” arXiv:2503.23175, Mar. 2025. URL: https://surl.lu/xonjqn. Дата звернення: 15.06.2025.
В. С. Кравчук, Н. О. Маслова та Я. Ю. Дорогий, “Автоматизований пошук XSS-вразливостей у веб-застосунках на основі мультиагентного підходу,” Наукові праці ДонНТУ. Серія “Обчислювальна техніка та автоматизація”, т. 3, № 4 (36), с. 13–26, 2025. DOI: 10.31474/2786-9024/v3i4(36).324435.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.